Section 4.1: Antiderivatives and Indefinite Integration

Antiderivatives

An antiderivative of $f(x)$ is a function whose derivative is $f(x)$.

- Differentiation and antidifferentiation are "inverse" operations of each other. That is, they undo the effect of each other.
- The important exception to this rule is that if you differentiate a function and then take its antiderivative, you do not get the original function, but the original function plus an arbitrary constant.
- If $F(x)$ is an antiderivative of $f(x)$, so is $G(x)=F(x)+C$, where C is a constant.

The antiderivative is indicated by the integral symbol \int. The antiderivative of the function $f(x)=x^{2}$ is denoted as follows:

$$
\int x^{2} d x=\frac{x^{3}}{3}+C
$$

It is often necessary to rewrite an integrand in terms of known derivatives of known functions before taking the antiderivative (see examples 5 and 6 on page 252).

Differential equations

An equation that involves $x, y(x)$ and derivatives of $y\left(\mathrm{~d} y / \mathrm{d} x, \mathrm{~d}^{2} y / \mathrm{d} y^{2}\right.$, etc.) is called a differential equation in x and y.

For example, $y^{\prime}=4 x$ is a differential equation whose solution is $y=2 x^{2}+C$.
To solve a differential equation, first rewrite it in differential form (i.e. $\mathrm{d} y=f^{\prime}(x) \mathrm{d} x$) and take the antiderivative of both sides.

Section 4.2: Area

Sigma (Σ, the Greek equivalent of the letter ' S ') is used to express sums in a compact form. For example, the sum of the series $a_{i}=i^{2}$ from $i=1$ to 5 would be represented by:

$$
1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=\sum_{i=1}^{5} i^{2}
$$

This would be read as "the sum of "a" sub "i" for "i" from "1" to "n"

Here are four useful summation formulas involving Σ :

$$
\begin{aligned}
& \sum_{i=1}^{n} c=c+c+c+\cdots+c=c n \\
& \sum_{i=1}^{n} i=1+2+3+\cdots+n=\frac{n(n+1)}{2} \\
& \sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(2 n+1)(n+1)}{6} \\
& \sum_{i=1}^{n} i^{3}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}
\end{aligned}
$$

Area of a plane region

The area between a curve and the x-axis can be approximated by dividing the interval over which the area is to be calculated into subintervals Δx; constructing a rectangle upon each interval whose width is the interval and height $f\left(c_{i}\right)$ is a value of the function evaluated at a point c_{i} in that subinterval; and adding up the areas of the rectangles.
[See Fig. 4.9 (pg. 262)]

$$
\text { Area } \approx \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

If the interval over which the area is to be calculated is $[a, b]$ and the number of subintervals is n, then $\Delta x=\frac{b-a}{n}$.

The points c_{i} may be chosen so that the rectangles intersect the curve on their left sides, their right sides, or anywhere in between.

- If c_{i} are chosen so that the tops of rectangles are always $\leq f(x)$ (i.e. are inscribed), the area of the rectangles is called a lower sum and is \leq the area under the curve. [See Fig. 4.12 (pg. 263)]
- If c_{i} are chosen so that the tops of rectangles are always $\geq f(x)$ (i.e. are circumscribed), the area of the rectangles is called an upper sum and is \geq the area under the curve.
- If the right endpoint of each subinterval is the chosen value for c_{i}, then c_{i} becomes simply $a+i \Delta x$ where a is the point at which the summing starts.
The limits of the upper and lower sums coincide as the number of rectangles (denoted n) approaches infinity. Therefore, according to the Squeeze Theorem (Theorem 1.8), they each limit is equal to the true area under the curve.

Hence,

$$
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

Procedure for calculating areas using limits:

1. Write an expression for Δx using $\Delta x=\frac{b-a}{n}$
2. Write an expression for c_{i} using $c_{i}=a+\Delta x$
3. Calculate $f\left(c_{i}\right)$
4. Set up the area expression and simplify algebraically
5. Use the summation formulas to rewrite in terms of n
6. Evaluate the limit

For an example of how this equation can be used to calculate the area under a curve, see Examples 5 and 6 on page 266.

